显卡全称显示接口卡(英文:Video card,Graphics card),又称为显示适配器(Video adapter),显示器配置卡简称为显卡,是个人电脑最基本组成部分之一。
显卡的用途是将计算机系统所需要的显示信息进行转换驱动,并向显示器提供行扫描信号,控制显示器的正确显示,是连接显示器和个人电脑主板的重要元件,是“人机对话”的重要设备之一。显卡作为电脑主机里的一个重要组成部分,承担输出显示图形的任务,对于喜欢玩游戏和从事专业图形设计的人来说显卡非常重要。民用显卡图形芯片供应商主要包括AMD(ATi)和Nvidia两家。
工作原理
数据(data) 一旦离开CPU,必须通过 4 个步骤,最后才会到达显示屏:
1、从总线(bus)进入GPU (Graphics Processing Unit,图形处理器)-将CPU送来的数据送到GPU(图形处理器)里面进行处理。
2、从 video chipset(显卡芯片组)进入video RAM(显存)-将芯片处理完的数据送到显存。
3、从显存进入Digital Analog Converter (= RAM DAC,随机读写存储模—数转换器),由显示显存读取出数据再送到RAM DAC进行数据转换的工作(数码信号转模拟信号)。
4、从 DAC 进入显示器 (Monitor)-将转换完的模拟信号送到显示屏。
显示效能是系统效能的一部份,其效能的高低由以上四步所决定,它与显示卡的效能(video performance) 不太一样,如要严格区分,显示卡的效能应该受中间两步所决定,因为这两步的资料传输都是在显示卡的内部。第一步是由 CPU(运算器和控制器一起组成了计算机的核心,成为微处理器或中央处理器,即CPU)进入到显示卡里面,最后一步是由显示卡直接送资料到显示屏上。
基本结构
1)GPU(类似于主板的CPU)
全称是Graphic Processing Unit,中文翻译为“图形处理器”。NVIDIA公司在发布GeForce 256图形处理芯片时首先提出的概念。GPU使显卡减少了对CPU的依赖,并进行部分原本CPU的工作,尤其是在3D图形处理时。GPU所采用的核心技术有硬件T&L(几何转换和光照处理)、立方环境材质贴图和顶点混合、纹理压缩和凹凸映射贴图、双重纹理四像素256位渲染引擎等,而硬件T&L技术可以说是GPU的标志。GPU的生产主要由nVidia与ATI两家厂商生产。
2)显存(类似于主板的内存)
显示内存的简称。顾名思义,其主要功能就是暂时将储存显示芯片要处理的数据和处理完毕的数据。图形核心的性能愈强,需要的显存也就越多。以前的显存主要是SDR的,容量也不大。而市面上基本采用的都是DDR3规格的,在某些高端卡上更是采用了性能更为出色的DDR4或DDR5代内存。显存主要由传统的内存制造商提供,比如三星、现代、Kingston等。
3)显卡bios(类似于主板的bios)
显卡BIOS 主要用于存放显示芯片与驱动程序之间的控制程序,另外还存有显示卡的型号、规格、生产厂家及出厂时间等信息。打开计算机时,通过显示BIOS 内的一段控制程序,将这些信息反馈到屏幕上。早期显示BIOS 是固化在ROM 中的,不可以修改,而多数显示卡则采用了大容量的EPROM,即所谓的Flash BIOS,可以通过专用的程序进行改写或升级。
4)显卡PCB板(类似于主板的PCB板)
就是显卡的电路板,它把显卡上的其它部件连接起来。功能类似主板。
5)其它
比如GPU风扇等等。
主要参数
1.显示芯片(型号、版本级别、开发代号、制造工艺、核心频率)
2.显存(类型、位宽、容量、封装类型、速度、频率)
3.技术(象素渲染管线、顶点着色引擎数、3D API、RAMDAC频率及支持MAX分辨率)
4.PCB板(PCB层数、显卡接口、输出接口、散热装置)
1)显示芯片
显示芯片:
又称图型处理器-GPU,它在显卡中的作用,就如同CPU在电脑中的作用一样。更直接的比喻就是大脑在人身体里的作用。
先简要介绍一下常见的生产显示芯片的厂商:Intel、ATI、nVidia、VIA(S3)、SIS、Matrox、3D Labs。
Intel、VIA(S3)、SIS 主要生产集成芯片;
ATI、nVidia 以独立芯片为主,是市场上的主流。
Matrox、3D Labs 则主要面向专业图形市场。
由于ATI和nVidia基本占据了主流显卡市场,下面主要将主要针对这两家公司的产品做介绍。
型号:
ATi公司的主要品牌 Radeon(镭龙) 系列,其型号由早其的7000/7200/7500/8500/9000/9200/9550/9600/9700/9800/X300/X600/X700/X800/X1300/X1600/X1800/X1900/X1950)
到近期的
Radeon (HD 2400/HD 2600/HD 2900/HD 3400/HD 3600/HD 三八00/HD 4350/HD 4550/HD 4600/HD 4650/HD 4670/HD 4770/HD 4800/HD 4850 X2/HD 4890/HD 4870 X2) 性能依次由低到高。
nVIDIA公司的主要品牌 GeForce(精视)系列,其型号由早其的 GeForce 256、GeForce2 (100/200/400)、GeForce3(200/500)、GeForce4(420/440/460/4000/4200/4400/4600/4800)到GeForce FX(5200/5500/5600/5700/5800/5900/5950)、GeForce(6100/6150/6200/6400/6500/6600/6800/)、GeForce (8400/8500/8600/8700/8800)再到近期的GeForce(9400GT/9500GT/9600GSO/9600GT/9800GT/9800GTX+/9800GX2/GTX260/GTX260+/GTX280/GTX275/GTX285/GTX295)由低到高。
版本级别:
除了上述标准版本之外,还有些特殊版,特殊版一般会在标准版的型号后面加个后缀,常见的有:
ATi:
SE (Simplify Edition 简化版) 通常只有64bit内存界面,或者是像素流水线数量减少。
Pro (Professional Edition 专业版) 高频版,一般比标版在管线数量/顶点数量还有频率这些方面都要稍微高一点。
XT (eXTreme 高端版) 是ATi系列中高端的,而nVIDIA用作低端型号。
XT PE (eXTreme Premium Edition XT白金版) 高端的型号。
XL (eXtreme Limited 高端系列中的较低端型号)ATI最新推出的R430中的高频版
XTX (XT eXtreme 高端版) X1000系列发布之后的新的命名规则。
CE (Crossfire Edition 交叉火力版) 交叉火力。
VIVO (VIDEO IN and VIDEO OUT) 指显卡同时具备视频输入与视频捕捉两大功能。
HM (Hyper Memory)可以占用内存的显卡
nVIDIA:
ZT 在XT基础上再次降频以降低价格。
XT 降频版,而在ATi中表示最高端。
LE (Lower Edition 低端版) 和XT基本一样,ATi也用过。
SE 和LE相似基本是GS的简化版最低端的几个型号
MX 平价版,大众类。
GS 普通版或GT的简化版。
GE 也是简化版不过略微强于GS一点点,影驰显卡用来表示"骨灰玩家版"的东东
GT 常见的游戏芯片。比GS高一个档次,因为GT没有缩减管线和顶点单元。
GTS介于GT和GTX之间的版本GT的加强版
GTX (GT eXtreme)代表着最强的版本 简化后成为成为GT
Ultra 在GF8系列之前代表着最高端,但9系列最高端的命名就改为GTX 。
GT2 eXtreme 双GPU显卡。
TI (Titanium 钛)以前的用法一般就是代表了nVidia的高端版本。
Go 用于移动平台。
TC (Turbo Cache)可以占用内存的显卡
GX2(GT eXtreme2)指两块显卡以SLI并组的方式整合为一块显卡,不同于SLI的是只有一个接口。如9800GX2 7950GX2
自G100系列之后,NVIDIA重新命名显卡后缀版本,使产品线更加整齐
GTX高端/性能级显卡 GTX295 GTX275 GTX285 GTX280 GTX260
GT代表主流产品线 GT120 GT130 GT140 GTS250(9500GT 9600GT 9800GT 9800GTX+ )
G低端入门产品 G100 G110 (9300GS 9400GT )
开发代号:
新的ATI Logo所谓开发代号就是显示芯片制造商为了便于显示芯片在设计、生产、销售方面的管理和驱动架构的统一而对一个系列的显示芯片给出的相应的基本的代号。开发代号作用是降低显示芯片制造商的成本、丰富产品线以及实现驱动程序的统一。一般来说,显示芯片制造商可以利用一个基本开发代号再通过控制渲染管线数量、顶点着色单元数量、显存类型、显存位宽、核心和显存频率、所支持的技术特性等方面来衍生出一系列的显示芯片来满足不同的性能、价格、市场等不同的定位,还可以把制造过程中具有部分瑕疵的高端显示芯片产品通过屏蔽管线等方法处理成为完全合格的相应低端的显示芯片产品出售,从而大幅度降低设计和制造的难度和成本,丰富自己的产品线。同一种开发代号的显示芯片可以使用相同的驱动程序,这为显示芯片制造商编写驱动程序以及消费者使用显卡都提供了方便。
同一种开发代号的显示芯片的渲染架构以及所支持的技术特性是基本上相同的,而且所采用的制程也相同,所以开发代号是判断显卡性能和档次的重要参数。同一类型号的不同版本可以是一个代号,例如:GeForce (X700、X700 Pro、X700 XT) 代号都是 RV410;而Radeon (X1900、X1900XT、X1900XTX) 代号都是 R580 等,但也有其他的情况,如:GeForce (7300 LE、7300 GS) 代号是 G72 ;而 GeForce (7300 GT、7600 GS、7600 GT) 代号都是 G73 等。
制造工艺:
制造工艺指得是在生产GPU过程中,要进行加工各种电路和电子元件,制造导线连接各个元器件。通常其生产的精度以um(微米)来表示,未来有向nm(纳米)发展的趋势(1mm=1000um 1um=1000nm),精度越高,生产工艺越先进。在同样的材料中可以制造更多的电子元件,连接线也越细,提高芯片的集成度,芯片的功耗也越小。
制造工艺的微米是指IC(integratedcircuit 集成电路)内电路与电路之间的距离。制造工艺的趋势是向密集度愈高的方向发展。密度愈高的IC电路设计,意味着在同样大小面积的IC中,可以拥有密度更高、功能更复杂的电路设计。微电子技术的发展与进步,主要是靠工艺技术的不断改进,使得器件的特征尺寸不断缩小,从而集成度不断提高,功耗降低,器件性能得到提高。芯片制造工艺在1995年以后,从0.5微米、0.35微米、0.25微米、0.18微米、0.15微米、0.13微米,再到主流的 90 纳米(0.09微米) 、65 纳米、55nm等。
核心频率:
显卡的核心频率是指显示核心的工作频率,其工作频率在一定程度上可以反映出显示核心的性能,但显卡的性能是由核心频率、显存频率、显存位宽、像素管线显存容量、像素填充率等等多方面的情况所决定的,因此在显示核心不同的情况下,核心频率高并不代表此显卡性能强劲。比如9600PRO的核心频率达到了400MHz,要比9800PRO的380MHz高,但在性能上9800PRO绝对要强于9600PRO。在同样级别的芯片中,核心频率高的则性能要强一些,提高核心频率就是显卡超频的方法之一。显示芯片主流的只有ATI和NVIDIA两家,两家都提供显示核心给第三方的厂商,在同样的显示核心下,部分厂商会适当提高其产品的显示核心频率,使其工作在高于显示核心固定的频率上以达到更高的性能。
2)显存
类型:
显卡上采用的显存类型主要有SDR DDR SDRAM,DDR SGRAM、 DDR2 、DDR3 、DDR4 、DDR5。
DDR SDRAM 是Double Data Rate SDRAM的缩写(双倍数据速率) ,它能提供较高的工作频率,带来优异的数据处理性能。
DDR SGRAM 是显卡厂商特别针对绘图者需求,为了加强图形的存取处理以及绘图控制效率,从同步动态随机存取内存(SDRAM)所改良而得的产品。SGRAM允许以方块 (Blocks) 为单位个别修改或者存取内存中的资料,它能够与中央处理器(CPU)同步工作,可以减少内存读取次数,增加绘图控制器的效率,尽管它稳定性不错,而且性能表现也很好,但是它的超频性能很差。
2009年,市场上的主流是DDR2DDR3 。(ATi则有部分显卡是GDDR4,GDDR5)
位宽:
显存位宽是显存在一个时钟周期内所能传送数据的位数,位数越大则瞬间所能传输的数据量越大,这是显存的重要参数之一。2009年市场上的显存位宽有64位、128位、256位和512位几种,人们习惯上叫的64位显卡、128位显卡和256位显卡就是指其相应的显存位宽。显存位宽越高,性能越好价格也就越高,因此512位宽的显存更多应用于高端显卡,而主流显卡基本都采用128和256位显存。
显存带宽=显存频率X显存位宽/8,在显存频率相当的情况下,显存位宽将决定显存带宽的大小。例如:同样显存频率为500MHz的128位和256位显存,那么它俩的显存带宽将分别为:128位=500MHz*128/8=8GB/s,而256位=500MHz*256/8=16GB/s,是128位的2倍,可见显存位宽在显存数据中的重要性。显卡的显存是由一块块的显存芯片构成的,显存总位宽同样也是由显存颗粒的位宽组成。显存位宽=显存颗粒位宽×显存颗粒数。显存颗粒上都带有相关厂家的内存编号,可以去网上查找其编号,就能了解其位宽,再乘以显存颗粒数,就能得到显卡的位宽。
容量:
虽然说在其他参数相同的情况下容量是越大越好,但对显卡这方面并不是很精通的朋友注意不要被大容量显存吸引了,比如说384M的9600GSO就远强于512M的9600GSO,原因有很多,这里就不一一列出了。只需要注意选择显卡时显存只不过是参考之一,重要的还是其他的数据,比如核心、位宽、频率等,这些决定显卡的性能优先于显存容量。
主流容量包括64M 128M 256M 384M 512M 768M 896M 1G 1792M 2G等
封装类型:
显存封装形式主要有:
TSOP (Thin Small Out-Line Package) 薄型小尺寸封装
QFP (Quad Flat Package) 小型方块平面封装
MicroBGA (Micro Ball Grid Array) 微型球闸阵列封装,又称FBGA(Fine-pitch Ball Grid Array)
2004年前的主流显卡基本上是用TSOP和MBGA封装,TSOP封装居多. 但是由于nvidia的gf3、4系的出现,MBGA成为主流,mpga封装可以达到更快的显存速度,远超TSOP的极限400MHZ。
速度:
显存速度一般以ns(纳秒)为单位。常见的显存速度有7ns、6ns、5.5ns、5ns、4ns,3.6ns、2.8ns、2.2ns、1.1ns 等,越小表示速度越快越好。
显存的理论工作频率计算公式是:额定工作频率(MHz)=1000/显存速度×n得到(n因显存类型不同而不同,如果是SDRAM显存,则n=1;DDR显存则n=2;DDRII显存则n=4)。
频率:
显存频率一定程度上反应着该显存的速度,以MHz(兆赫兹)为单位。
显存频率随着显存的类型、性能的不同而不同:
SDRAM显存一般都工作在较低的频率上,一般就是133MHz和166MHz,此种频率早已无法满足显卡的需求。
DDR SDRAM显存则能提供较高的显存频率,因此是采用最为广泛的显存类型,无论中、低端显卡,还是高端显卡大部分都采用DDR SDRAM,其所能提供的显存频率也差异很大,主要有400MHz、500MHz、600MHz、650MHz等,高端产品中还有800MHz或900MHz,乃至更高。
显存频率与显存时钟周期是相关的,二者成倒数关系,也就是显存频率=1/显存时钟周期。如果是SDRAM显存,其时钟周期为6ns,那么它的显存频率就为1/6ns=166 MHz;而对于DDR SDRAM,其时钟周期为6ns,那么它的显存频率就为1/6ns=166 MHz,但要了解的是这是DDR SDRAM的实际频率,而不是平时所说的DDR显存频率。因为DDR在时钟上升期和下降期都进行数据传输,其一个周期传输两次数据,相当于SDRAM频率的二倍。习惯上称呼的DDR频率是其等效频率,是在其实际工作频率上乘以2,就得到了等效频率。因此6ns的DDR显存,其显存频率为1/6ns*2=333 MHz。但要明白的是显卡制造时,厂商设定了显存实际工作频率,而实际工作频率不一定等于显存最大频率。此类情况较为常见,如显存最大能工作在650 MHz,而制造时显卡工作频率被设定为550 MHz,此时显存就存在一定的超频空间。这也就是厂商惯用的方法,显卡以超频为卖点。
3)技术
象素渲染管线:
渲染管线也称为渲染流水线,是显示芯片内部处理图形信号相互独立的的并行处理单元。
在某种程度上可以把渲染管线比喻为工厂里面常见的各种生产流水线,工厂里的生产流水线是为了提高产品的生产能力和效率,而渲染管线则是提高显卡的工作能力和效率。 渲染管线的数量一般是以 像素渲染流水线的数量×每管线的纹理单元数量 来表示。渲染管线的数量是决定显示芯片性能和档次的最重要的参数之一,在相同的显卡核心频率下,更多的渲染管线也就意味着更大的像素填充率和纹理填充率,从显卡的渲染管线数量上可以大致判断出显卡的性能高低档次。但显卡性能并不仅仅只是取决于渲染管线的数量,同时还取决于显示核心架构、渲染管线的的执行效率、顶点着色单元的数量以及显卡的核心频率和显存频率等等方面。
一般来说在相同的显示核心架构下,渲染管线越多也就意味着性能越高,但是在不同的显示核心架构下,渲染管线的数量多就并不意味着性能更好,例如4×2架构的GeForce2 GTS其性能就不如2×2架构的GeForce4 MX440。
顶点着色引擎数
顶点着色引擎(Vertex Shader),也称为顶点遮蔽器,根据官方规格,顶点着色引擎是一种增加各式特效在3D场影中的处理单元,顶点着色引擎的可程式化特性允许开发者靠加载新的软件指令来调整各式的特效,每一个顶点将被各种的数据变素清楚地定义,至少包括每一顶点的x、y、z坐标,每一点顶点可能包函的数据有颜色、最初的径路、材质、光线特征等。顶点着色引擎数越多速度越快。
3D API:
API是Application Programming Interface的缩写,是应用程序接口的意思,而3D API则是指显卡与应用程序直接的接口。
3D API能让编程人员所设计的3D软件只要调用其API内的程序,从而让API自动和硬件的驱动程序沟通,启动3D芯片内强大的3D图形处理功能,从而大幅度地提高了3D程序的设计效率。如果没有3D API,在开发程序时程序员必须要了解全部的显卡特性,才能编写出与显卡完全匹配的程序,发挥出全部的显卡性能。而有了3D API这个显卡与软件直接的接口,程序员只需要编写符合接口的程序代码,就可以充分发挥显卡的性能,不必再去了解硬件的具体性能和参数,这样就大大简化了程序开发的效率。同样,显示芯片厂商根据标准来设计自己的硬件产品,以达到在API调用硬件资源时最优化,获得更好的性能。有了3D API,便可实现不同厂家的硬件、软件最大范围兼容。比如在最能体现3D API的游戏方面,游戏设计人员设计时,不必去考虑具体某款显卡的特性,而只是按照3D API的接口标准来开发游戏,当游戏运行时则直接通过3D API来调用显卡的硬件资源。
个人电脑中主要应用的3D API有:DirectX和OpenGL。
RAMDAC频率和支持最大分辨率:
RAMDAC是Random Access Memory Digital/Analog Convertor的缩写,即随机存取内存数字~模拟转换器。
RAMDAC作用是将显存中的数字信号转换为显示器能够显示出来的模拟信号,其转换速率以MHz表示。计算机中处理数据的过程其实就是将事物数字化的过程,所有的事物将被处理成0和1两个数,而后不断进行累加计算。图形加速卡也是靠这些0和1对每一个象素进行颜色、深度、亮度等各种处理。显卡生成的都是信号都是以数字来表示的,但是所有的CRT显示器都是以模拟方式进行工作的,数字信号无法被识别,这就必须有相应的设备将数字信号转换为模拟信号。而RAMDAC就是显卡中将数字信号转换为模拟信号的设备。RAMDAC的转换速率以MHz表示,它决定了刷新频率的高低(与显示器的“带宽”意义近似)。其工作速度越高,频带越宽,高分辨率时的画面质量越好。该数值决定了在足够的显存下,显卡最高支持的分辨率和刷新率。如果要在1024×768的分辨率下达到85Hz的分辨率,RAMDAC的速率至少是1024×768×85Hz×1.344(折算系数)≈90MHz。2009年主流的显卡RAMDAC都能达到350MHz和400MHz,已足以满足和超过大多数显示器所能提供的分辨率和刷新率。
散热设备
显卡所需要的电力与150瓦特灯具所需要的电力相同,由于运作集成电路 (integrated circuits)需要相当多的电力,因此内部电流所产生的温度也相对的提高,所以,假如这些温度不能适时的被降低,那么上述所提到的硬设备就很可 能遭受损害,而冷却系统就是在确保这些设备能稳定、适时的运转,没有散热器或散热片,GPU或内存会过热,就会进而损害计算机或造成当机,或甚至 完全不能使用。
这些冷却设备由导热材质所制成,它们有些被视为被动组件,默默安静地进行散热的动作,有些则很难不发出噪音,如风扇。
散热片通常被视为被动散热,但不论所安装的区块是导热区,或是内部其它区块,散热片都能发挥它的效能,进而帮助其它装置降低温度。散热片通常与风扇一同被安装至GPU或内存上,有时小型风扇甚至会直接安装在显卡温度最高的地方。
显卡是个极度依赖散赖管进行散热的装置,由华硕所制成的Raden X 1600就拥有两个散热管,它们可将热能传送至位于卡槽后方的大型散热片进行散热。
散热片的表面积愈大,所进行之散热效能就愈大(通常必须与风扇一起运作),但有时却因空间的限制,大型散热片无法安装于需要散热的装置上;有时又因为装置的体积太小,以至于体积大的散热片无法与这些装置连结而进行散热。因此,热管就必须在这个时候将热能从散热处传送至散热片中进行散热。一般而言,GPU外壳由高热能的传导金属所制成,热管会直接连结至由金属制成的芯片上,如此一来,热能就能被轻松的传导至另一端的散热片。
市面上有许多处理器的冷却装置都附有热管,由此可知,许多热管已被研发成可灵活运用于显卡冷却系统中的设备了。
大部分的散热器只是由散热片跟风扇组合而成,在散热片的表面上由风扇吹散热能,由于GPU是显卡上温度最高的部分,因此显卡散热器通常可以运用于GPU上,同时,市面上有许多零售的配件可供消费者进行更换或升级,其中最常见的就是VGA散热器。(免责声明:文章内容如涉及作品内容、版权和其它问题,请及时与我们联系,我们将在第一时间删除内容,文章内容仅供参考)