发表时间:2022-03-23来源:网络
在实际的工作项目中, 缓存成为高并发、高性能架构的关键组件 ,那么Redis为什么可以作为缓存使用呢?首先可以作为缓存的两个主要特征:
在分层系统中处于内存/CPU具有访问性能良好,缓存数据饱和,有良好的数据淘汰机制由于Redis 天然就具有这两个特征,Redis基于内存操作的,且其具有完善的数据淘汰机制,十分适合作为缓存组件。
其中,基于内存操作,容量可以为32-96GB,且操作时间平均为100ns,操作效率高。而且数据淘汰机制众多,在Redis 4.0 后就有8种了促使Redis作为缓存可以适用很多场景。
那Redis缓存为什么需要数据淘汰机制呢?有哪8种数据淘汰机制呢?
Redis缓存基于内存实现的,则其缓存其容量是有限的,当出现缓存被写满的情况,那么这时Redis该如何处理呢?
Redis对于缓存被写满的情况,Redis就需要缓存数据淘汰机制,通过一定淘汰规则将一些数据刷选出来删除,让缓存服务可再使用。那么Redis使用哪些淘汰策略进行刷选删除数据?
在Redis 4.0 之后,Redis 缓存淘汰策略6+2种,包括分成三大类:
不淘汰数据
noeviction ,不进行数据淘汰,当缓存被写满后,Redis不提供服务直接返回错误。在设置过期时间的键值对中,
volatile-random ,在设置过期时间的键值对中随机删除volatile-ttl ,在设置过期时间的键值对,基于过期时间的先后进行删除,越早过期的越先被删除。volatile-lru , 基于LRU(Least Recently Used) 算法筛选设置了过期时间的键值对, 最近最少使用的原则来筛选数据volatile-lfu ,使用 LFU( Least Fre Used ) 算法选择设置了过期时间的键值对, 使用频率最少的键值对,来筛选数据。在所有的键值对中,
allkeys-random, 从所有键值对中随机选择并删除数据allkeys-lru, 使用 LRU 算法在所有数据中进行筛选allkeys-lfu, 使用 LFU 算法在所有数据中进行筛选Note: LRU( 最近最少使用,Least Recently Used)算法, LRU维护一个双向链表 ,链表的头和尾分别表示 MRU 端和 LRU 端,分别代表最近最常使用的数据和最近最不常用的数据。
LRU 算法在实际实现时,需要用链表管理所有的缓存数据,这会带来额外的空间开销。而且,当有数据被访问时,需要在链表上把该数据移动到 MRU 端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会降低 Redis 缓存性能。
其中,LRU和LFU 基于Redis的对象结构redisObject的lru和refcount属性实现的:
typedef struct redisObject { unsigned type:4; unsigned encoding:4; // 对象最后一次被访问的时间 unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock) or * LFU data (least significant 8 bits frequency // 引用计数 * and most significant 16 bits access time). */ int refcount; void *ptr; } robj;Redis的LRU会使用redisObject的lru记录最近一次被访问的时间,随机选取参数maxmemory-samples 配置的数量作为候选集合,在其中选择 lru 属性值最小的数据淘汰出去。
在实际项目中,那么该如何选择数据淘汰机制呢?
优先选择 allkeys-lru算法,将最近最常访问的数据留在缓存中,提升应用的访问性能。有顶置数据使用 volatile-lru算法 ,顶置数据不设置缓存过期时间,其他数据设置过期时间,基于LRU 规则进行筛选 。在理解了Redis缓存淘汰机制后,来看看Redis作为缓存其有多少种模式呢?
Redis缓存模式基于是否接收写请求,可以分成只读缓存和读写缓存:
只读缓存:只处理读操作,所有的更新操作都在数据库中,这样数据不会有丢失的风险。
Cache Aside模式读写缓存,读写操作都在缓存中执行,出现宕机故障,会导致数据丢失。缓存回写数据到数据库有分成两种同步和异步:
同步:访问性能偏低,其更加侧重于保证数据可靠性
Read-Throug模式Write-Through模式异步:有数据丢失风险,其侧重于提供低延迟访问
Write-Behind模式查询数据先从缓存读取数据,如果缓存中不存在,则再到数据库中读取数据,获取到数据之后更新到缓存Cache中,但更新数据操作,会先去更新数据库种的数据,然后将缓存种的数据失效。
而且Cache Aside模式会存在并发风险:执行读操作未命中缓存,然后查询数据库中取数据,数据已经查询到还没放入缓存,同时一个更新写操作让缓存失效,然后读操作再把查询到数据加载缓存,导致缓存的脏数据。
查询数据和更新数据都直接访问缓存服务,缓存服务同步方式地将数据更新到数据库。出现脏数据的概率较低,但是就强依赖缓存,对缓存服务的稳定性有较大要求,但同步更新会导致其性能不好。
查询数据和更新数据都直接访问缓存服务,但缓存服务使用异步方式地将数据更新到数据库(通过异步任务) 速度快,效率会非常高,但是数据的一致性比较差,还可能会有数据的丢失情况,实现逻辑也较为复杂。
在实际项目开发中根据实际的业务场景需求来进行选择缓存模式。那了解上述后,我们的应用中为什么需要使用到redis缓存呢?
在应用使用Redis缓存可以提高系统性能和并发,主要体现在
高性能:基于内存查询,KV结构,简单逻辑运算高并发: Mysql 每秒只能支持2000左右的请求,Redis轻松每秒1W以上。让80%以上查询走缓存,20%以下查询走数据库,能让系统吞吐量有很大的提高虽然使用Redis缓存可以大大提升系统的性能,但是使用了缓存,会出现一些问题,比如,缓存与数据库双向不一致、缓存雪崩等,对于出现的这些问题该怎么解决呢?
使用了缓存,会出现一些问题,主要体现在:
缓存与数据库双写不一致缓存雪崩: Redis 缓存无法处理大量的应用请求,转移到数据库层导致数据库层的压力激增;缓存穿透:访问数据不存在在Redis缓存中和数据库中,导致大量访问穿透缓存直接转移到数据库导致数据库层的压力激增;缓存击穿:缓存无法处理高频热点数据,导致直接高频访问数据库导致数据库层的压力激增;只读缓存(Cache Aside模式)
对于只读缓存(Cache Aside模式), 读操作都发生在缓存中,数据不一致只会发生在删改操作上(新增操作不会,因为新增只会在数据库处理),当发生删改操作时,缓存将数据中标志为无效和更新数据库 。因此在更新数据库和删除缓存值的过程中,无论这两个操作的执行顺序谁先谁后,只要有一个操作失败了就会出现数据不一致的情况。
谈到面试,其实说白了就是刷题刷题刷题,天天作死的刷。。。。。
为了准备这个“金三银四”的春招,狂刷一个月的题,狂补超多的漏洞知识,像这次美团面试问的算法、数据库、Redis、设计模式等这些题目都是我刷到过的
掌上小满app(又名OKKI)下载v6.24.2 安卓版
108.1M |商务办公
星巴克中国官方版app下载v10.9.3 安卓版
138.0M |生活服务
abc reading app手机版下载v7.3.35 安卓最新版本
218.9M |学习教育
智慧联想摄像头app(更名智享家)下载v4.1.6.2 安卓最新版本
211.4M |生活服务
星通货主app下载v902 安卓版
142.5M |生活服务
火花思维官方版下载v2.1.1 安卓手机版
208.6M |学习教育
火山小视频极速版2025(改名抖音火山版)下载v33.4.0 安卓官方正版
248.5M |影音播放
泰州通app下载v2.2.2 安卓版
126.9M |商务办公
2022-06-23
2022-01-27
2022-03-31
2022-01-20
2011-04-23
2022-03-31
2022-03-31
2022-05-19
2022-07-08
2022-07-07